Técnica utilizada en modelos de aprendizaje automático para penalizar los pesos grandes o complejos que pueden conducir al sobreajuste. El objetivo de la regularización de pesos es evitar que los modelos se vuelvan demasiado sensibles a pequeñas variaciones en los datos de entrenamiento y promover la
generalización a nuevos datos. Dos métodos comunes de regularización de pesos son la regularización L1 (Lasso) y la regularización L2 (Ridge).