Técnica en la que se aplican conocimientos aprendidos en una tarea a otra tarea relacionada. En lugar de entrenar un modelo desde cero para cada tarea, se utiliza un modelo pre-entrenado como punto de partida y se ajusta para adaptarse a la nueva tarea. El aprendizaje de transferencia es útil cuando se dispone de conjuntos de datos pequeños o cuando las tareas comparten características comunes.