Entrada

Pruning

Es el proceso de eliminación de conexiones no esenciales en redes neuronales para optimizar el rendimiento y la eficiencia del modelo. Durante el pruning, se identifican y eliminan las conexiones menos importantes o redundantes en la red neuronal, lo que reduce la complejidad del modelo y el costo computacional asociado con su ejecución. El pruning puede ayudar a mejorar la generalización del modelo y reducir el riesgo de overfitting.

Entrada

Prueba de Turing

Es una prueba propuesta por Alan Turing en la década de 1950 para evaluar la capacidad de una máquina para exhibir un comportamiento inteligente similar al de un ser humano. La máquina pasa la prueba si un observador humano no puede distinguir si las respuestas provienen de una máquina o de un ser humano.

Entrada

Precision-Recall Curve

Método de reducción de dimensionalidad utilizado para simplificar conjuntos de datos manteniendo la mayor cantidad posible de información. PCA transforma el conjunto de datos original en un conjunto de componentes principales, que son combinaciones lineales de las variables originales. Estas componentes principales capturan la variabilidad de los datos de manera ordenada, lo que facilita la visualización y el análisis de datos de alta dimensión.

Entrada

Precision-Recall Curve

Gráfico que muestra el equilibrio entre la precisión y la exhaustividad de un modelo en función de un umbral de decisión. La precisión se refiere a la proporción de instancias positivas correctamente identificadas, mientras que la exhaustividad se refiere a la proporción de instancias positivas en el conjunto de datos que fueron
correctamente identificadas por el modelo. La curva de precisión-recall es útil para evaluar el rendimiento de un clasificador en problemas con clases desbalanceadas.

Ir al contenido