Parámetro que se configura antes del entrenamiento del modelo y afecta el proceso de aprendizaje, pero no se aprende automáticamente del conjunto de datos. Los hiperparámetros controlan aspectos como la complejidad del modelo, la velocidad de aprendizaje y la regularización. Algunos ejemplos comunes de hiperparámetros incluyen la tasa de aprendizaje en redes neuronales, el número de árboles en un modelo de bosque aleatorio y el valor de K en el algoritmo de vecinos más cercanos (K-nearest Neighboors)