Entrada

Agnosias

Alteraciones en el reconocimiento del mundo que nos rodea, ya sea por la entrada visual (agnosia visual), auditiva (agnosia auditiva), táctil (agnosia táctil), olfativa (anosmia), alteraciones del reconocimiento en el esquema corporal (asomatognosia), sin que se alteren los aspectos elementales de la visión, de la audición, tacto, olfato y gusto (Hécaen, 1982).

Entrada

Afasia

La afasia es un trastorno causado por lesiones en las partes del cerebro que controlan el lenguaje. Puede dificultar la lectura, la escritura y expresar lo que se desea decir. Las causas posibles: Infecciones localizadas en el cerebro, Ictus (Infarto cerebral, hemorragia cerebral, derrame, trombosis, embolia, etc.), Demencia, Tumores, Traumatismos craneales.

Entrada

Actividades Instrumentales de la Vida Diaria (AIVD)

Llamadas así porque requieren algunos instrumentos para ser realizadas, posibilitando a la persona tener una vida social mínima.

Dentro de ellas se cuentan el uso del teléfono, cuidado de la casa, salir de compras, preparación de la comida, uso de medios de transporte, uso adecuado del dinero y responsabilidad sobre sus propios medicamentos.

Entrada

Accidente Vascular Cerebral

Alteración de los vasos sanguíneos cerebrales caracterizada por la oclusión debida a un émbolo o a hemorragia cerebrovascular que produce isquemia de los tejidos cerebrales habitualmente perfundidos por los vasos afectados.

Entrada

Explainable AI (XAI)

Es un enfoque de IA que busca hacer que los modelos de inteligencia artificial sean más comprensibles y transparentes para los humanos. Esto implica desarrollar técnicas y métodos que expliquen cómo funciona un modelo de IA, cómo llega a sus decisiones y qué características de los datos influyen en esas decisiones. La XAI es importante para mejorar la confianza en los sistemas de IA, permitiendo que los usuarios comprendan y verifiquen el razonamiento detrás de las decisiones automatizadas.

Entrada

Evolutionary Algorithms

Son métodos de optimización inspirados en los principios de la evolución biológica, como la selección natural y la reproducción. Estos algoritmos generan una población inicial de soluciones candidatas y aplican operadores de selección, cruce y mutación para evolucionar y mejorar las soluciones a lo largo de múltiples generaciones. Se utilizan en una variedad de aplicaciones de optimización, como diseño de sistemas, ingeniería, finanzas y aprendizaje automático.

Entrada

Ética de la IA

Se refiere a los principios y normas éticas que guían el desarrollo, la implementación y el uso de la IA. Esto incluye consideraciones sobre la equidad, transparencia, privacidad, seguridad, responsabilidad y el impacto social de los sistemas de IA. La ética de la IA busca garantizar que la tecnología se utilice de manera ética y responsable, teniendo en cuenta sus posibles implicaciones para los individuos, las comunidades y la sociedad en su conjunto.

Entrada

Ensamble

Es una técnica en el aprendizaje automático que combina múltiples modelos individuales para mejorar el rendimiento predictivo. Los modelos individuales pueden ser del mismo tipo o de tipos diferentes. Al combinar las predicciones de múltiples modelos, el ensamble puede reducir el sesgo y la varianza, lo que lleva a un modelo más robusto y generalizable. Algunos métodos comunes de ensamble incluyen el bagging, boosting y la combinación de modelos por voto.

Ir al contenido